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Abstract—This study examines the integration of pricing and 

lot-sizing strategies within a system comprising only one 

producer and retailer. The adoption of a bi-level programming 

technique is justified in establishing a bi-level joint pricing model 

guided by the producer owing to the hierarchical nature of the 

supply chain. This problem maximizes manufacturer and retailer 

profitability by setting the wholesale quantity, lot size, and retail 

price simultaneously. We created a bi-level particle swarm 

optimization to solve bi-level programming challenges. This 

algorithm effectively addresses BLPPS by eliminating the need 

for any priori assumptions about the conditions of the problem. 

The bi-level particle swarm optimization algorithm demonstrated 

a commendable level of efficacy when applied to a set of eight 

benchmark bi-level issues. The proposed bi-level model was 
solved using the BPSO and analyzed using experimental data. 

Keywords—Bi-Level algorithm; joint pricing; optimization; 

particle swarm optimization; supply chain 

I. INTRODUCTION 

Supply chain participants are driven by the goal of selling 
goods, and product prices affect the level of demand in the 
market [1]. Likewise, the practice of determining the optimal 
order quantity has resulted in decreased expenses, 
encompassing both the ordering process for retailers and 
production costs for manufacturers. Consequently, strategic 
decisions pertaining to pricing and lot sizing assume crucial 
significance in the pursuit of profit optimization within a 
supply chain [2].  In fact, it is critical that the sale price is 
neither excessively low nor exorbitant.  Conversely, when the 
retail price is set at an excessively low level, the retailer 
experiences diminished profitability or potentially even 
financial losses. However, if the product is priced too high, 
customers will exhibit reduced purchasing intent, resulting in 
surplus inventory and additional inventory-related expenses 
for the retailer [3]. Furthermore, because of an overabundance 
of inventory, the retailer will opt to decrease either the 
frequency of orders or the amounts ordered from the producer. 
Consequently, this leads to significant financial losses for 
producers. Hence, the implementation of rational pricing and 
lot-sizing policies is of utmost importance and indispensable 
[4]. Considerable research has been conducted on the issue of 
optimal pricing, owing to the various factors outlined. In their 
seminal work, Panchal, Jain, and Kumar (2015) presented a 
comprehensive model that addresses the intertwined issues of 
ordering and price discounting in a supplier-buyer relationship 
[5]. The model focuses on a scenario in which a supplier 

offers a quantity discount to its sole or significant buyer. 
However, the problem is approached solely from the supplier's 
standpoint, neglecting the retailer's perspective on retail 
pricing. Pourrahmani and Jaller (2021) examined the concept 
of collaborative pricing and replenishment as a means of 
addressing a network pricing problem known as NP-hard [6]. 
Ghahremani-Nahr et al. (2019) primarily concentrated on 
enhancing an exact algorithm that optimize their strategies for 
a service operating inside an oligopolistic setting [7]. The 
issue is framed as a leader-follower game conducted over a 
distribution network. Yuan (2021)  proposed bi-level models 
to address price problems [8]. 

This paper utilizes several numerical tests to showcase the 
efficacy of the BPSO method. Later, the BPSO technique was 
used to solve the bi-level model. Ultimately, the attributes of 
the suggested bi-level model are examined through multiple 
illustrations. 

II. LITERATURE REVIEW 

The lot-sizing problem, considered a critical challenge in 
supply chain management, has piqued the interest of various 
experts who have conducted extensive research on the subject. 
Diabat et al. (2017) investigated the stochastic variant of lot-
sizing issues that incorporate inventory bounds and order 
capabilities [9]. Kulkarni and Bansal (2022) examined a novel 
topic involving the lot sizing of multiple items in a dynamic 
setting [10]. They specifically examined a situation in which 
all items' inventories are concurrently replenished with an 
equal quantity after a production event. Gáti and Bányai 
(2023) Explored the problem of optimizing production 
quantities and managing resource allocation in an industry 
with several competing enterprises [11]. The authors present a 
capacity competition model that incorporates the complexities 
of fluctuating demand, cost functions, and economies of scale 
arising from dynamic lot-sizing costs. 

Curcio, de Lima, Miyazawa, Silva, and Amorim, (2023) 
were successfully formulated and determined the best pricing 
and lot-sizing options for a store [12]. In their work published, 
Tosarkani & Amin, (2018) examines the issue of pricing and 
lot-sizing in the context of price-sensitive demand [13]. They 
formulated the coordination problem between a seller and 
consumer as a two-person fixed bargaining game.  In their 
study, Bazan et al., (2016) approach by include both the 
backlogging cost and the cost associated with lost goodwill 
[14]. Abdulah (2020) provided a deterministic model for 
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calculating the economic order quantity in a retail setting [15]. 
The model's objective is to accurately predict the effectiveness 
of a proposed ordering algorithm in mitigating the bullwhip 

effect to a significant degree. 

Each individual within the chain possesses autonomous 
control over a distinct set of decision variables that do not 
overlap with the others. These individuals are required to 
make decisions based on their own personal interests while 
also taking into account the decisions made by others, as these 
decisions will impact their own interests.  Therefore, bi-level 
programming problems (BLPPs) are extremely suitable for 
representing price and lot-sizing challenges inside a supply 
chain. 

In general, solving a bi-level programming problem is 
challenging for two main reasons. First, bi-level programming 
problems are classified as NP-hard problems [16]. Second, the 
concavity of bi-level programming problems further adds to 
their complexity. Currently, numerous approaches exist to 
resolve this issue. Four major linear bi-level programming 
methods were identified in [17], [18]. These categories include 
neuro-fuzzy algorithms, simulated annealing strategies, vertex 
enumeration, Kuhn-Tucker conditions, and metaheuristics 
such as genetic algorithm-based strategies [19]. 

It is important to note that certain limitations exist when 
using methods that rely on vertex enumeration and the Kuhn-
Tucker conditions to solve bi-level programming problems 
[20]. These constraints encompass the necessity for the 
objective function to be differentiable or for the search space 
to be convex. Metaheuristic approaches are capable of 
resolving exceedingly complex nonlinear problems in contrast 
to traditional search algorithms. Management extensively uses 
metaheuristic optimization [21]. In practice, most bi-level 
problems extend beyond linear programming and encompass a 
range of intricate scenarios. Therefore, it is imperative to 
devise efficient and optimal approaches for addressing these 
issues. 

A Bi-level Linear Programming (BLPP) is a type of 
multilevel programming issue [22]. Within the framework of 
BLPP, the decision maker situated at the higher level initially 
formulates a strategy [23]. The general bi-level formula can be 
expressed as follows: min𝑥 ∈ 𝑋 𝑓 1(𝑥, 𝑦)  𝑠. 𝑡  𝐺(𝑥, 𝑦) ≤ 0, 

where, the y vector solves min𝑦 ∈ 𝑌 𝑓 2(𝑥, 𝑦)  𝑠. 𝑡  𝑔(𝑥, 𝑦) ≤ 0, 
Let x ∈X ℎ ⊂ ℝn1 and y ∈ Y ⊂ ℝn2 

where,  

x: Set of control-level variables  

and  

y is the set of follower-level variables. 

The leader has an objective function,𝑓 1(𝑥, 𝑦) , and the 
follower has an objective function of - 𝑓 2(𝑥, 𝑦). 

Additionally, 𝐺(𝑥, 𝑦) ≤ 0  and 𝑔(𝑥, 𝑦) ≤ 0  represent the 
constraints associated with upper and lower-level problems, 
respectively. 

III. METHOD 

A. Development Model 

After acquiring the raw materials from the supplier, the 
producer carries out the production and processing procedures 
(see Fig. 1). The completed products are subsequently 
delivered to the retailer. 

Supplier RetailerProduction Customer

Leader Follower

 
Fig. 1. Two-echelon system. 

The producer has the potential to influence the retailer's 
decisions, but lacks complete control over them.  The initial 
step in the pricing process involves the producer establishing a 
wholesale price for their items. Subsequently, the retailer 
responds by considering the producer's assortment and 
subsequently determines the retail price. 

The producer negotiates the price at the wholesale level 
and quantity ordered with the supplier in order to maximize 
the net profit, as determined by the primary objective function 
[24], [25]. The net profit of the producer was calculated by 
subtracting the costs of purchasing, production, transportation, 
holding, and ordering from the money generated from sales. 
The second-level objective function sets forth the retail prices 
and order quantities for retailers. The primary objective is the 
retailer's net profit, which is calculated as the ratio of sales to 
the costs associated with purchasing, holding, and ordering. 

A bi-level model was constructed based on specific 
assumptions [17], [26]. 

1) The producer or retailer can make separate decisions to 
maximize earnings. 

2) Retail prices decrease consistently with the market 
demand. 

3) Producers and retailers quickly restock. 
4) Each replenishment period was consistent, and 

shortages were avoided. 
5) The cost of purchasing components and the price of the 

product for the end consumer remain constant throughout the 
planning horizon. 

This paper uses these notations: 

Aspects that impact the producer's decision β :  The anticipated of orders quantity that the producer 
will place in the near future. 𝓅m: wholesale unit price 
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Decision-making factors used by the retailer α : quantity of retailer lots divided by producer lots ϱ :retailer lot size 𝓅r   :The unit retail price 

Additional Relevant Parameters 

T :  the planned horizon's weekly length 

D :   weekly demand rate  D= b – ar.pr  

hm :   amount of the producer's on a weekly basis storage 
cost 

hr :  retail store's weekly storage cost rate 

Om : Purchasing cost of each order incurred by the 
producer. 

Or :  Purchasing fee for each transaction for the retailer.  

ps : Fee for purchasing a unit from the producer.  

Tc : unit transportation cost 

Mc : Cost of procuring units for producer. 

Qm :  a company's net profit throughout the planning period 

Qr : net profit for the store throughout the planning period 

B. Construction Model 

The producer and retailer net income during planning are 
indicated by Im and Ir, respectively. Im =  (pm − ps −  Tc −  Mc)αβQ Ir =  (pr −  pm)αβQ 

The average inventory level of the product–retailer 
combination is determined by the equation α Q/2, where α is a 
constant. Consequently, the producer's inventory level can be 
calculated as Q multiplied by the quantity (α − 1)/2. 

The producer and retailer holding costs during planning 
are indicated by Hm and Hr, respectively. Hm = hmT. ps. Q (α−1)2  = 

hmTps Q (α−1)2  Hr = hrT. pm. Q 2  = 
hrTpm Q 2  

Producer and retailer order expenses within planning are 
indicated by Cm and Cr, respectively. Cm =  βOm Cr = αβOr 

The net earnings of the producer and retailer during 
planning are indicated by Um and Ur, respectively. ∏ m = Im − Hm − Cm = (pm − ps − Tc − Mc)(αβ𝒬) − (hmTps Q (α−1)2 ) − (βOm)     (1) ∏ r = Ir −  Hr − Cr = prTD − (pmαβQ) − (hrTpmQ2 ) − (αβOr)      (2) 

By integrating Eq. (1) and Eq. (2), the following model is 
established for the supply chain: max𝛽,𝑝𝑚 ∏ 𝑚 = (𝑝𝑚 −  𝑝𝑠 − 𝑇𝑐 −  𝑀𝑐) (𝛼𝛽𝑄) − (ℎ𝑚𝑇𝑝𝑠 𝑄 (𝛼−1)2 ) − (𝛽𝑂𝑚  ) 

s.t. 𝛽 𝜖 𝑁+, 𝑝𝑠 +  𝑇𝑐 + 𝑀𝑐  ≤  𝑝𝑚  ≤  𝑝𝑚∗    (3) max𝛼,𝑝𝑟,𝑄 ∏ 𝑟 = (𝑝𝑟𝑇𝐷) −  (𝑝𝑚𝛼𝛽𝑄) −  (ℎ𝑟𝑇𝑝𝑚𝑄2 ) − (𝛼𝛽𝑂𝑟)   s. t. 𝛼 𝜖 𝑁+, 
The correlation between the quantity of deliveries and the 

lot size is 

Q = 
𝑇𝐷𝛼𝛽     (4) 

Retail prices are believed to be multiples of wholesale 
prices, 𝑃𝑟 =  𝐾𝑝𝑚    (5) 

Let K be the ratio of wholesale to retail prices where K > 
1. 

It is critical that wholesale and retail pricing remain within 
the appropriate limits and do not surpass specific levels.  By 
utilizing Eq. (4) and Eq. (5), it is possible to convert Problem 
(3) into Problem (6) through the following transformation: max𝛽,𝑝𝑚 ∏ 𝑚 = (𝑝𝑚 −  𝑝𝑠 − 𝑇𝑐 −  𝑀𝑐) (𝑇𝐷) − (ℎ𝑚𝑇2𝑝𝑠 𝐷 (𝛼−1)2𝛼𝛽 ) −  (𝛽𝑂𝑚) 

s.t. 𝛽 𝜖 𝑁+, 𝑝𝑠 +  𝑇𝑐 +  𝑀𝑐  ≤  𝑝𝑚  ≤  𝑝𝑚∗   (6) max𝛼,𝑘 ∏ 𝑟 = (𝑘𝑝𝑚𝑇𝐷) − (𝑝𝑚𝑇𝐷) −  (ℎ𝑟𝑇2𝑝𝑚𝐷2𝛼𝛽 ) −  (𝛼𝛽𝑂𝑟  ) 

s.t. 𝛼 𝜖 𝑁+, 1 ≤  𝑘 ≤  𝑘∗ 

The variables 𝑝𝑚∗  and 𝑘∗denote the maximum values of 𝑝𝑚 
and k. 

IV. RESULT 

A. Bi-level PSO-based Algorithms 

Kennedy (1995) present a Particle Swarm Optimization 
(PSO) technique [27].  The Particle Swarm Optimization 
(PSO) algorithm, as described in [28], is a stochastic 
evolutionary algorithm that operates on a population-based 
approach. PSO has demonstrated its effectiveness in 
addressing complex optimization problems, offering 
advantages such as simplified coding and a reduced number of 
parameters [29], [30].  Particle Swarm Optimization (PSO) 
considers each individual as a particle, disregarding any 
notions of quality or bulk [31], [32]. 

The orientation and speed of the particles are denoted by 𝑥𝑖 =  (𝑥𝑖1 , 𝑥𝑖2 , … , 𝑥𝑖𝐷), and 𝑣𝑖 =  (𝑣𝑖1 , 𝑣𝑖2 , … , 𝑣𝑖𝐷) 
respectively. The variable 𝑝𝑖 = (𝑝𝑖1 , 𝑝𝑖2 , … , 𝑝𝑖𝐷)  represents 
the best position that the swarm have reached, while 𝑝𝑔 =(𝑝𝑔1 , 𝑝𝑔2 , … , 𝑝𝑔𝐷) represents the best position that the swarm 
have reached.  The manipulation of particles is governed by 
the following equations: 
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𝑣𝑖𝑑(𝑡 + 1) =  𝑤𝑣𝑖𝑑  (𝑡) +  𝑐1𝑟1(𝑝𝑖𝑑  (𝑡) − 𝑥𝑖𝑑(𝑡)) +  𝑐2𝑟2 (𝑝𝑔𝑑  (𝑡) − 𝑥𝑖𝑑(𝑡))     (7) 

and 𝑥𝑖𝑑  (𝑡 + 1) = 𝑥𝑖𝑑  (𝑡) + 𝑣𝑖𝑑  (𝑡 + 1)   (8) 

The given conditions are as follows: for any values of d 
and D where 1 ≤ d ≤ D, and for any values of i and N where 1 
≤ i ≤ N, there exist two non-negative constants denoted as 𝑐1  
and 𝑐2 . Additionally, there are two randomly generated 
integers, denoted as x and y, that follow an equal distribution, 
in the range of (0,1). 

The maximum current value is denoted as 𝑣𝑖𝑑 𝜖 [−𝑣𝑚𝑎𝑥 , 𝑣𝑚𝑎𝑥], 𝑣𝑚𝑎𝑥. 

When j, we set t.   

The prior velocity of the particle impacts its present 
velocity through the inertia weight w. The inertia weight w is 
crucial for balancing the global and local search capabilities. 
The global search capacity increased as w increased, whereas 
the local search capacity decreased. Conversely, when the 
value of w decreased, the opposite situation occurred. 

Shi and Eberhart (1999) offer an approach known as linear 
decline, which is outlined as follows. 𝑤 (𝑡) =  𝑤𝑚𝑖𝑛+ (𝑤𝑚𝑎𝑥 −  𝑤𝑚𝑖𝑛). (𝑡𝑚𝑎𝑥−𝑡𝑡𝑚𝑎𝑥 )   (9) 

The "t" represents the tth iteration, while " tmax " represents 
the maximum number of iterations for that iteration. The 
initial inertia weight is represented by variables wmin and wmax, 
which indicate the smallest and highest values, respectively. 

B. Managing Constraint 

The upper and lower-level problems in BLPP (see Eq. (1)) 
are standard constraint optimization that do not consider the 
leader-follower information interaction [33]. Managing 
constraint is crucial for constraint optimization. 

Consider the constraint optimization problem as follows: min 𝐹 (𝑥) 

s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1,2, … , 𝑝     (10) 

where, S is the search space, x 𝜖 S, and S ⊆  𝑅𝑛. 

By incorporating a penalty element, Eq. (10) can be 
reformulated as follows: 

min 𝐹 (𝑥) = 𝑓(𝑥) + 𝑀 ∑(max{𝑔𝑖(𝑥), 0})2,𝑝
𝑖=1  

Variable M represents a predetermined and significantly 
large positive constant, denoted as a penalty factor. 

This approach is analogous to treating upper-level 
programming problems. It is assumed that the lower-level 
programming problem comprises p and q inequality 
constraints. In addition, it is assumed that the variable x of the 
upper-level programming problem is predetermined. Within 
the realm of the search area, a particle that adheres to the 

given restrictions is referred to as a feasible particle, whereas a 
particle that fails to meet the criteria is labeled as an infeasible 
particle.  In the present scenario, it is possible to determine the 
finesse of all particles, both feasible and infeasible, using the 
following equations: 

fit (x,y) = { 𝑓(𝑥, 𝑦), 𝑖𝑓 𝑦 ∈ Ω (𝑥)𝑓(𝑥, 𝑦), 𝑖𝑓 𝑦 ∈ 𝑆\Ω (𝑥)    (11) 

and 

F(x,y) = f(x,y) + M ∑ (max{𝑔𝑖  (𝑥, 𝑦), 0})2 𝑚𝑖=1 ,   ( 12) 

where, S indicates search area, while  Ω (x) is the feasible 
set of lower-level problem. 

C. Implementation 

Based on an analysis of the interacting iterations of two 
fundamental PSO algorithms, it has been observed that Binary 
Particle Swarm Optimization (BPSO) can solve BLPP without 
relying on any specific assumptions [34], [35], such as the 
availability of gradient information for the objective functions 
or the convexity of constraint regions. The details are 
presented in the subsequent sections. 

Algorithm 1: 

Step 1: Preparation of parameters by measuring population N1, 
determining maximum iteration Tmax1, with learning 
factors c1 and c2, determining maximum and minimum 
inertia weights wmax and wmin, as well as maximum 
speed vmax x, and enforcement factor M. 

Step 2: Set the position xi and velocity vxi of each particle to the 
upper level’s decision variables. The begin position yi 
and velocity vyi are based on lower-level decision 
parameters. 

Step 3: Set the loop counter of the leader to t1 = 0. 

Step 4: If the algorithm fulfills completion conditions or an upper 
limit of iterations, move to the final step; otherwise, 
follow Steps 4.1–4.5. 

Step a: For each xi, Algorithm 2 solves lower-level 
programming problems and determine the 
optimal solution for 𝑦∗, as the follower 
response. 

Step b: Calculate the particle fitness values using 
Eq.(11) and (12) 

Step c: The best particle (pxi) and population (pxg) 
positions are recorded. If pxi is higher than the 
best in history, a new pxi is declared. Choose 
the particle with the highest fitness value for 
pxg. 

Step d: Update the particle positions using Eq.(7)–(9). 

Step e: t1 = t1+1.  

Step 5: If it the maximum number of iterations, proceed to Step 5. 
Otherwise, proceed to step 3. 

Step 6: Final best results. 
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Algorithm 2 : 

Step 1: Preparation of parameters N2 (population), and Tmax2 
(maximum iteration) 

Step 2:  Start with the subsequent loop counter t2 = 0. 

Step 3: Eq. (11) and (12) are used to calculate particle fitness. 

Step 4: Record the particle's ith best location pyi and population's 
pyg. 

Step 5: Update the follower position and velocity using Eq. (7) – 
(9). 

Step 6:   = t2 +1. 

Step 7: Move to Step 8 if the algorithm reaches its maximum 
number of iterations. Otherwise, proceed to step 5. 

Step 8:  Optimum lower-level problem solutions 𝑦∗  . 

D. Simulation 

For every bi-level problem, we perform 20 different 
executions of the BPSO algorithm. Table I presents the 
optimal and average outcomes obtained from solving the four 
linear bi-level programming problems using the BPSO 
algorithm. Comparative analyses of these results are provided 
in Tables II and III. Table IV presents the optimal outcomes 
obtained by solving the four nonlinear bi-level programming 
problems using the BPSO, along with the corresponding 
comparisons. 

Table I lists the four linear test function solutions for the 
BPSO algorithm.  Based on the findings presented in Tables II 
and III, it can be inferred that the outcomes obtained from 
solving the four linear bi-level programming problems using 
BPSO exhibit superior performance in terms of both the best 
and average results, as compared to the results obtained using 
the GA and PSO algorithms. 

The BPSO algorithm finds the optimal solutions for four 
nonlinear bi-level problems: Problem 5's best solution is 
(0.0422, 1.9339, 2.8674, 1.4395), the optimal solution for the 
6th problem is (0.7886, 1.8556), the optimal solution for 7th 
problem is (3.9960, 0.0004), and the optimal solution for 8th 
problem is (0.5014, 0.2026, 0.8275). 

Based on Table IV, in terms of optimizing the upper-level 
objective function of the 5th problem, it was observed that the 
BPSO algorithm exhibited superior accuracy compared to the 
other three algorithms.  However, disparities between their 
performances were minimal.  To optimize the upper-level 
objective function of the 7th problem, the performance of 
BPSO was found to be comparable to that of the other three 
algorithms, with only a small difference. However, the BPSO 
outperformed the other three methods when considering the 
lower-level objective function. 

TABLE I. BPSO-BASED RESULTS 

Simulations 
Best Result Average Result 

f1 f2 f1 f2 

1st 977090 - 478546 880162 - 458824 

2nd 109967 - 109967 109471 - 109471 

3rd 157155 - 39212 156555 - 39345 

4th 297327 - 30834 290413 - 32731 

TABLE II. BEST ALGORITHM COMPARISONS 

  Binary PSO GA PSO 

Test problems  The best solution The best value The best solution The best value The best solution The best value 

1st 
 

f1 
x = (13.713,11.378) 

97.7092 x = (17.458,10.906) 85.0551 x = (17.454,10.907) 85.08 

f2 - 47.854 
 

- 50.170 
 

- 50.175 

2nd 
 

f1 x = (15.759,10.997) 10.997 x = (15.998,10.998) 10.998 x = (15.999,10.999) 10.999 

f2 
 

- 10.997 
 

- 10.998 
 

- 10.999 

3rd 
 

f1 x = (3.952,3.922) 15.717 x = (3.999,3.997) 15.997 x = (4,6) 18 

f2 
 

3.921 
 

- 3.9466 
 

- 5 

4th 
 

f1 x = (0.193,0.392) 29.733 x = (0.000,0.898) 29.148 x = (0.004,0.899) 29.179 

f2 y = (0.544,0.675, 0.445) 3.0835 y = (0.000,0.600, 0.400) - 3.193 y = (0,0.600, 0.400) - 3.198 

TABLE III. AVERAGE RESULTS FROM DIFFERENT ALGORITHMS 

Test problems 
 Average values 

 
Binary PSO G_A PSO 

1st 
f1 88.016 84.658 84.852 
f2 - 45.883 - 50.030 - 50.078 

2nd 
f1 10.947 10.808 10.997 
f2 - 10.947 - 10.808 - 10.997 

3rd 
f1 15.656 15.827 15.988 
f2 - 3.933 - 3.947 - 3.9963 

4th 
f1 29.043 21.529 24.816 
f2 - 3.271 - 3.392 - 3.198 
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TABLE IV. BEST ALGORITHM RESULTS COMPARISONS 

Test problems 
 Results 

 
Binary PSO Hybrid_PSO_BLP T_R_M Original 

5th 
f1 - 15.203 - 14.758 - 12.78 - 12.78 

f2 1.036 0.207 - 1.026 - 1.026 

6th 
 

f1 66.956 88.777 88.80 88.89 

f2 - 15.837 - 0.770 - 0.87 - 0.87 

7th 
f1 2.019 2 2 2 

f2 23.981 24.018 24.04 24.22 

8th 
f1 1.038 2.709 2.76 2.85 

f2 - 0.517 0.562 0.76 0.67 

E. Evaluation 

This section solves bi-level joint pricing and lot-sizing 
model (6) using the BPSO method.  Determination of Eq. (6) 
Parameters 

T = 52, hm = 0.001,  

Om = 2000,  

ps = 4,  

hr = 0.001,  

Or = 200,  

Tc = 0.5, and Mc = 1. 

To enhance the analysis of our model, we initially 
established an upper constraint for the wholesale price, 
denoted as p = 10. We examine two upper limits for the retail-
to-wholesale pricing ratio, designated k* = 2 and k* = 5. The 
parameters' configurations of BPSO are consistent with those 
outlined in the previous section. The outcomes of the 
optimization process are presented in Tables V and VI. 

TABLE V. RESULTS FROM DIFFERENT COEFFICIENT GROUPS  (K*=2) 

Demand function 

coefficients        
α β 𝑝𝑚 k 𝑝𝑟 Q ∏ 𝑚 ∏ 𝑟 

a = 2,  
b = 600 

4 4 
9.8
84 

1.9
69 

19.4
55 

18
26 

1192
92 

2761
20 

a = 4,  
b = 600 

4 2 
9.4
08 

1.9
43 

18.2
62 

34
27 

1018
60 

2407
60 

a = 6, 
b = 600 

3 4 
9.7
95 

1.9
34 

18.9
37 

21
18 

1001
82 

2288
30 

a = 8, 
b = 600 

3 3 
9.6
86 

1.9
36 

18.7
38 

26
11 

9133
4 

2101
50 

TABLE VI. RESULTS FROM DIFFERENT COEFFICIENT GROUPS  (K*= 5) 

Demand function 

coefficients        
α β 𝑝𝑚 k 𝑝𝑟 Q ∏ 𝑚 ∏ 𝑟 

a = 2,  
b = 600 

3 4 
9.32
23 

4.68
85 

43.70
76 

22
21 

951
88 

9141
10 

a = 4,  
b = 600 

5 2 
9.82
55 

4.45
34 

43.75
69 

22
10 

906
68 

7478
30 

a = 6,  
b = 600 

5 3 
9.59
64 

4.77
33 

45.80
65 

11
27 

627
95 

6092
50 

a = 8,  
b = 600 

2 2 
9.81
84 

4.30
1 

42.22
89 

34
08 

545
17 

4410
50 

Fig. 2 and 3 depict a decrease in the net profits of both the 
producer and retailer in response to an increase in demand 
price sensitivity. 

 
Fig. 2. Producer and retailer net profits curves under k =2. 

 
Fig. 3. Producer and retailer net profit curves under k =5. 

Fig. 4 and Fig. 5 illustrate the variations in net profits for 
both the producer and the shop at different levels of demand. 
Based on the examination of Fig. 4 and Fig. 5, it can be 
observed that the net profit of the producer is comparatively 
reduced when the value of k is 5 in contrast to when it is 2, 
assuming an identical demand function. In contrast, the net 
profit of the store exhibits a notable increase when the value 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 4, 2024 

751 | P a g e  
www.ijacsa.thesai.org 

of k is 5 as opposed to 2. The observed gap can be ascribed to 
the differential behavior of retail and wholesale prices, 
specifically when k is equal to 5. In this scenario, the retail 
price increases, whereas the wholesale price remains 
comparatively stable. This is in contrast to the situation where 
k is equal to 2. 

 
Fig. 4. Comparison of producer net profits. 

If the producer's interests are violated because of an 
increased retail price, the producer may choose to increase the 
wholesale price. As a result, this course of action possesses the 
capacity to increase retail pricing, culminating in a decline in 
the sales volume of products as a consequence of the 
augmented selling price. The drop in profitability for both the 
producer and retailer will result in a subsequent decline in the 
overall efficiency of the entire supply chain.  Therefore, to 
effectively maximize their respective profits and avoid being 
caught in a harmful cycle where market demand decreases due 
to rising retail prices, it is recommended that both the 
producer and retailer refrain from continuously increasing the 
price of the product. 

 
Fig. 5. Comparison of retailer net profits. 

V. DISCUSSION 

The bi-level particle swarm optimization (BLPSO) is an 
effective method for solving intricate decision-making 
problems in supply chain management. The BLPSO algorithm 
has been utilized in many supply chain models, providing 
effective solutions for combined pricing and strategic sourcing 
strategies [36]. Research has demonstrated that it has 
exceptional search performance and rapid convergence, 
rendering it a highly useful instrument for addressing bi-level 
optimization problems in supply chain management [37]. 
Moreover, the simulation findings indicate that the large-scale 
BLPSO method has enhanced stability and supremacy when it 
comes to tackling supply chain optimization challenges [38]. 

In addition, researchers have investigated the combination 
of BLPSO with other metaheuristic methods, such as genetic 
algorithms, to improve its effectiveness in solving bi-level 
linear programming issues related to supply chain 
management. The hybrid strategy has demonstrated potential 
in effectively tackling the combined issues of pricing and 
inventory control in a two-level supply chain [39]. In addition, 
the creation of innovative dynamic Pareto BLPSO algorithms 
has broadened the use of BLPSO in addressing multi-objective 
optimization challenges in supply chain management [40]. 

BLPSO has been applied to solve optimization challenges 
beyond supply chain management, including job shop 
scheduling and the selection of locations for electric vehicle 
charging infrastructure [41]. The BLPSO algorithm's ability to 
effectively handle various optimization issues demonstrates its 
potential to tackle intricate decision-making challenges across 
a wide range of fields. 

In summary, utilizing BLPSO in the context of joint 
pricing within a supply chain provides a strong and effective 
method for tackling intricate decision-making challenges. The 
tool's capacity to manage multi-objective optimization, 
strategic sourcing, and large-scale supply chain models 
renders it a significant asset for optimizing decision-making 
processes in supply chain management. 

VI. CONCLUSION 

The primary objective of this model is to optimize the 
profits of both the producer and retailer. This optimization is 
achieved by simultaneously determining the number of orders 
for both parties, lot size for the retailer, and wholesale and 
retail prices. Based on the characteristics of the bi-level 
programming issue and the resulting bi-level model discussed 
in this article, we provide a BPSO technique to identify the 
most effective solutions. 

The BPSO algorithm was employed to address the bi-level 
model presented in this study. The results obtained include the 
ideal number of orders for both the producer and retailer, 
optimal lot size for the retailer, and optimal wholesale and 
retail prices. These optimal values were simultaneously 
determined by considering the specified constraints. 

Based on the collected data, the analysis reveals certain 
outcomes that align with market principles. Notably, one of 
these outcomes indicates a negative correlation between the 
sensitivity of demand to price and net profits of both the 
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producer and retailer. It is also observed that in cases where 
market demand is responsive to changes in selling price, both 
the producer and retailer should not consistently increase the 
wholesale and retail prices if their goal is to maximize 
individual profits. This approach may result in unfavorable 
outcomes and reduce overall supply chain efficiency. The 
findings of this study further corroborate the effectiveness of 
the BPSO in addressing BLPPS. 
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