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Highlights:  
 The method of lines was applied to analyze the wavelength dependence 

characteristics of directional couplers. 
 This forward semi numerical and analytical scheme was proven to be a versatile 

method to simulate simple optical directional couplers. 
 To prevent mode back reflection propagating near the computational edge, a special 

absorbing boundary condition was applied to increase the calculation accuracy. 
 The switching characteristics of optical directional couplers were analyzed to show 

the versatility of the method of lines.  
 

Abstract. Optical directional couplers fabricated using planar light wave circuit 
(PLC) technology are versatile tools in integrated photonics devices. They have 
the advantages of small size, high consistency, ability for high volume production, 
and excellent possibility to be integrated with electronics circuits. Optical 
waveguide couplers are mainly utilized as power dividers, optical switches, and 
wavelength division multiplexers/de-multiplexers (WDM). A number of methods 
have been used to analyze directional couplers, such as coupled mode theory 
(CMT), the beam propagation method (BPM), the method of lines (MoL), finite-
difference methods (FDM) and finite element methods (FEM). Among these 
numerical approaches, MoL is the simplest method to analyze mode propagation 
inside directional couplers because it has the advantages of very fast convergence 
and accurate solutions for one-dimensional structures. The objective of this study 
was to analyze the propagation of TE modes in optical directional couplers by 
using MoL. The parameters used, i.e. waveguide width, refractive index and 
wavelength, were taken from the characteristics of silica-on-silicon directional 
couplers that were used in fabrication. MoL is considered a special finite-
difference method, which discretizes a one- or two-dimensional wave equation in 
the transverse direction and uses an analytical solution for the propagation 
directions. Basically, MoL is a semi analytical numerical method with the 
advantages of numerical stability, computational efficiency and calculation time 
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reduction. Further, we explored the possibility of using directional couplers as 
optical switching devices. 

Keywords: method of lines; absorbing boundary condition, optical directional couplers; 
optical switch; planar light wave circuits. 

1 Introduction 
Optical directional couplers are versatile devices that play a pivotal role in the 
construction of advanced optical communication networks. They are widely used 
in a number of passive and active devices in fiber and integrated optics structures, 
including in modulators, switches, wavelength filters, ring resonators, 
interferometers, and wavelength division multiplexers/ demultiplexers [1-6]. 
They consist of two parallel waveguides that are put closely together with a 
separation distance small enough to let power transfer occur between two modes 
in two different waveguides through the evanescent field [7]. The light initially 
launches into the first waveguide. The presence of the second waveguide in close 
proximity to the first waveguide perturbs the mode inside the first waveguide. 
This perturbation creates a transfer, or coupling, of energy from the first to the 
second waveguide, as the light propagates in the z direction. The total power 
transfer may be obtained if both waveguides are identical [7-12].  

So far, a number of effective numerical techniques have been suggested for the 
analysis of directional couplers. These include finite-difference methods (FDM), 
finite-element methods (FEM), the beam propagation method (BPM), and the 
method of lines (MoL). FDM is the oldest numerical method for solving partial 
differential equations. It is easy to program and to apply to non-homogenous 
refractive index profiles. This method subdivides the domain into many sub 
regions, in which the partial derivatives are replaced by finite-difference 
operators. The set of equations is then solved to obtain the eigenvalues. A 
drawback of FDM is that it offers less flexibility in the modeling of the domain 
since the sub regions are normally rectangular in shape. FEM can model intricate 
domain geometries, where the waveguide cross section is split into surface or 
volume elements and a polynomial is used to approximate the field in each 
element interface. Boundary conditions for field continuity are applied on all 
interfaces between the different elements. Various representations of Maxwell’s 
equations are then employed to obtain an eigenvalue equation matrix form, which 
is then solved by common methods. This method requires a more complex 
programming structure and is more demanding in terms of both computer time 
and memory [13-16]. 

BPM has been used to analyze various two- and three-dimensional optical 
devices. The original BPM used a fast Fourier transfer (FFT) algorithm and 
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solved a paraxial scalar wave equation. The fundamental concept of BPM is to 
signify the field by the plane wave’s superposition in homogenous media. The 
advantages of BPM are that it can be used on an arbitrary cross-section structure 
and that both guided and radiative waves are included in the analysis. However, 
since the formulation is derived with the assumption that the variation of the 
refractive index is negligible in the transverse direction, FFT-BPM cannot be 
used on structures with large index discontinuities [17-19]. 

To analyze a general waveguide structure, MoL has been proved to be a versatile 
tool because it has advantages in terms of convergence rate and the accuracy of 
the solution for one-dimensional structures. It is a special numerical method 
combined with an analytical method, where the wave equations are divided into 
a small area in the transverse direction. The analytical solution is employed in the 
propagation direction, which results in efficient computer calculation. An exact 
solution may be achieved because MoL behaves in a stationary way and 
convergence is monotonic. The discontinuity of the fields may be matched 
exactly since boundary conditions are inserted at the edges of the calculation 
window [16]. Additionally, as a numerical scheme MoL can easily be applied in 
computer calculations. In this study, MoL was used to analyze TE mode 
propagation in a simple optical directional coupler based on silica-on-silicon 
structures [16,20]. Further, we give an example of the directional coupler’s 
application as an optical switching device. 

2 Research Method 
The approach used was to employ MoL to analyze silica waveguide based optical 
directional couplers that were fabricated using electron beam irradiation [26]. 
This fabrication method results in a weakly guiding structure, hence the refractive 
index differences between core and cladding are not very high. The basic data, 
i.e. waveguide width, waveguide separation, refractive index of core and 
cladding, were taken from real measurements of the power exchange in the silica 
based optical directional couplers.  

2.1 The Method of Lines 
To analyze the silica based directional coupler arrangement, we built an 
appropriate numerical model considering a coupler constructed by two parallel 
waveguides with constant thickness and gap, as shown in Figure 1. It was 
assumed that both guides were weakly guiding and single moded; the width and 
separation of the two guides were constant so that the amplitudes changed slowly 
with propagation distance. For the TE mode case, Ey is the only available electric 
field component. For the analysis we therefore started with the following scalar 
equation [20-22]:  
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 2 2 2( , ) ( , ) 0y o yE x z k n E x z    (1) 

here n is the refractive index distribution forming the waveguide and ko is the 
wave number, i.e. where is the optical wavelength. To solve Eq. (1) by 
using MoL, the structure to be analyzed is divided into small elements of x in 
the transverse x direction, as shown in Figure 1. 

 

Figure 1 MoL discretization scheme used for the example of a directional 
coupler. 

For the second derivative term, d2E/dx2, the following approximation was used 
[14,16]:  
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Then Eq. (1) decreases to a set of differential equation in matrix form:  

   (3) 

where E


=[E1, E2, E3, ......, EN]t is a transpose column vector consisting of 
discretized quantities of the E(x) field at points x1, x2, .... xN.. Q is a matrix 
consisting of diagonal elements n1

2, n2
2, ....nN

2 representing the dielectric constant 
distribution of the waveguide at points x1, x2, .... xN.. In Eq. (3) there appears the 
tridiagonal structure of matrix Q


, which consists of three components that are 
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coupled with each other so a simple analytical solution cannot be achieved. 
Therefore, the Q


matrix needs to be transformed so that: 

 1T QT 
  

  (4) 

and 

 1E T E
 

 (5) 

where E  is the transformed field vector, T


 are the eigenvectors of matrix Q


 

arranged in columns, and 


 are the eigenvalues of Q


 in diagonal matrix form. 

If this is done, the wave Eq. (3) can be written as a diagonalized equation of the 

form [21]: 

 
2

2
2 0d E E

dz
    (6) 

If 


 is a constant matrix, i.e. if the structure is invariant in the z direction, a 
solution to Eq. (6) may be obtained in the following form [20-22]: 

 j z j zE e a e b     (7) 

Here, the two terms describe forward and backward going waves, whose 
amplitudes are described by the vectors a  and b , respectively. If no back-
reflected waves occur (such as in a straight lossless waveguide), Equation (7) 
may be written as: 

 j zE e a   (8) 

To obtain the field in the original domain, we use Eq. (5) to invert Eq. (8). For an 
input field inpE


 the result is:  

 1j z
inpE Te T E 

   
 (9) 

Eq. (9) represents the solution for a mode transmitting in the +z direction. Finally, 
the mode powers remaining in the optical core at a certain point z can be 
computed by using the overlap integral as [24]:  

 
2

( ) ( ,0) ( , )P z E x E x z dx




   (10) 
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Here E(x,0) and E(x,z) are the initial and the output fields at point z respectively. 

2.2 Boundary Condition 
In computational calculations using a numerical method, the computational 
window needs to be restricted; therefore the field values near the boundaries have 
to be altered as if the computational window appears to extend infinitely. If there 
are no truncation conditions, the radiation fields will bounce back from the 
calculation border and enter the computational window, leading to a standing 
wave pattern that interferes with the final result. To overcome this, a slightly 
different absorbing boundary condition (ABC) is introduced [22,23]. The most 
common method of defining an ABC is based on the factorization of the wave 
equation. To begin with Eq. (1) is rewritten as:  

 2 2 2 2
0( ) 0z xLE D D k n E     (11) 

where : 

 
2

2
2

x
Dx 




,  
2

2
2

z
Dz 




 

The operator L is then divided into part L+ and L- as inbound and outbound mode 
respectively, as described in [22], so that: 

 0  ELLLE  (12) 

Here the terms L+ and L- are given by :  

 21xL D j S    , here 
2

2 zDS


  (13) 

and: 

 
22

0 nk  
If we want to prevent wave reflection at both edges of the computational window, 
only outbound waves are allowed at that point. It can be shown that the field must 
then described by [23]: 

  (14) 

for the mode propagating in the –x direction, and 

 0L E   (15) 

for the mode transmitting in the +x direction. Suitable absorbing boundary 
conditions will be obtained from these two equations. However, the existence of 

0EL
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a radical in Eq. (13) prevents direct calculation of Eq. (12). Therefore, to 
implement ABC an approach to simplify the radical using algebraic 
approximation is needed. The radical may be approximated as [22,23]: 

 2 2
0 21 S p p S    (16) 

where, the coefficients p0 and p2 need to be chosen according to the method of 
interpolation [23]. However, the values p0 = 1 and p2 = 0.5 are usually utilized. 
Eqs. (12), (13) and (16) are employed to find the field factors E0 and EN+1 at the 
computational border of the discretized field at the computational edge in the 
upper and the lower sections, as shown in Figure 1. By using some algebraic 
operation it can be shown as follows [23]: 

 0 1 2u uE a E b E     

 1 1N l N l NE b E a E                                                (17) 

where the coefficients ap and bp are given by:  

 
22

1
d

p
d

na
jn





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 1
1

d
p

d

jnb
jn


 


 (18) 

with 2/1
pd xn   and p = u,l, where u and l represent the computational edges 

in the upper and lower sections, respectively. 

2.3 Optical Switching Mechanism 
One interesting application of optical directional couplers is as switching devices, 
which is a key component in optical communication systems. Currently, many 
switching technologies are available with very reliable operational mechanisms, 
such as electro-optic effects [1,2], thermo-optic (TO) effects [3,4], and 
mechanical means [6]. One reliable technology for optical switching waveguides 
is Ti-diffusion in LiNbO3, where electro-optic effects are used. Today, switched 
directional couplers based on LiNbO3 devices are commercially available. 
However, they are polarization sensitive and expensive, while the main benefit 
of such devices is that they can operate very fast, in the sub-nanosecond regime. 

3 Numerical Results 
The propagation of modes inside the coupling area is highly governed by the 
waveguide parameters, i.e. effective refractive index of waveguides structures, 
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wavelength and separation distance between the two cores. However, the 
condition where two waveguides are initially isolated will be disturbed by the 
presence of a second adjacent waveguide. If both waveguides are closely 
separated, then the evanescent field starts to transfer to the second waveguide, 
which leads to power exchange from waveguide core 1 to waveguide core 2.  

The parameters used in the simulation are typical of silica-on-silicon slab 
waveguide devices and were taken from experiments. Following [20], we used a 
substrate refractive index of ns = 1.460 and an index different of 5 x 10-3. A core 
guide width of h = 4.5 m and a wavelength of = 1.55 m were also used. To 
implement the method, the eigenvalues and eigenvectors of matrix 𝑄 were first 
calculated numerically using Eq. (4). For the eigenvalues, the result was in the 
range of discretised values of as shown schematically in Figure 2. The single-
mode guided propagation constant is then the maximum value of which lies 
between the values kon2 and kon1. 
 
         kon2                                 kon1 

  
                          
        
    radiation   guided        
       mode          

Figure 2 Discretized values of obtained by the method of lines, including 
radiation propagation constants. 

Figure 3 demonstrates the effective refractive index as a function of wavelength 
for a straight dielectric waveguide. The solid line signifies solutions of the 
eigenvalue equation, while the circle points were obtained from the MoL 
calculation. In this calculation, parameter values typical of the silica-on-silicon 
waveguide as mentioned above were used again. Both solutions had excellent 
similarity between the MoL numerical and the exact analytical results. This 
shows that the MoL theory can be used as an excellent tool to calculate planar 
waveguide geometry [4].  

Figure 4 demonstrates the power transfer propagating between modes inside two 
waveguides along the coupling length directional coupler for three different 
refractive index values. It shows the power transfer between the modes in the two 
waveguides as an oscillatory function of propagation distance. As the refractive 
index difference increases, coupling occurs at longer length; this is because the 
modes are strongly confined inside the waveguides and the evanescent field 
inside the core tends to be very small, and therefore longer coupling lengths are 
needed to exchange power between the two waveguides. 



 Ary Syahriar, et al. 

406 

 
Figure 3 Effective index refraction of a planar waveguide computed by MoL and 
by solution of the analytical equation. 

 
Figure 4 Power transfer as a function of propagation distance with different 
refractive index changes. 

Figure 5 demonstrates the variation of normalized power with propagation 
distance for three different wavelengths; again, the output is transferred between 
the two guides in an oscillatory manner. The same as in Figure 4, as the 
wavelength becomes longer, the coupling length gets shorter. This is because for 
a longer wavelength the mode tends to spread further into the cladding, creating 
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larger evanescent fields and shorter coupling lengths. Similar power transfer 
characteristics can also be obtained by using CMT. A comparison of the power 
transfer results obtained using CMT and MoL was done in [8] with slightly 
different structures, however both theories agree very well.  

 
Figure 5 Power transfer as a function of propagation distance with different 
wavelengths. 

Figure 6 demonstrates the power exchange along the propagation distance; power 
is plotted in a three-dimensional representation. In this case, different parameters 
were used, with a substrate refractive index of ns = 1.460 and an index different 
of 1x 10-2. A core guide width of h = 4.0 m and a wavelength of = 1.55 m 
were also used. The input power was inserted into the left-hand waveguide and 
was gradually coupled into the right-hand guide. In this example, full power 
transfer was obtained after propagation over a distance of 8445 m.  

An important application of a directional coupler is in optical switches. In this 
case, as shown in Figure 6, energy launched into one waveguide will totally 
transfer to the other guide. This condition is referred to as the coupled state. If by 
some means we can now introduce a finite difference between the two guides, the 
power will instead emerge from the first guide. This condition is referred to as 
the straight-through state. By varying the refractive index electrically we can 
switch the light energy from one waveguide to the other. This phenomenon is the 
basic principle behind the optical directional coupler switch [9-12].  
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Figure 6 Power exchange of a planar waveguide directional coupler computed 
with MoL. The modal power launched into the left guide is seen to couple to the 
right guide. 

We now consider the physical mechanisms that allow electrical operation of a 
switch. There are two common mechanisms, namely the electro-optic effect and 
the thermo-optic effect. The former refers to the modification of the material 
index of refraction caused by an electric field. The effect is strong in non-centro 
symmetric crystals such as LiNbO3. In case of a directional coupler switch, the 
index change is obtained by utilizing an electric field on the two guides via metal 
electrodes deposited above the waveguides so that the effective index of one 
guide increases while the other decreases [10,25]. As a result, light can be made 
to switch back and forth between the two guides. Two assumptions are made: 
first, the change in propagation constant of each guide is assumed to be directly 
proportional to the electric field, and second, any variation of coupling coefficient 
due to the electric field is assumed to be negligible.  

On the other hand, directional couplers based on silica-on-silicon waveguides 
cannot easily be used as switching devices. Unlike the electro-optic effect (where 
the index changes directly proportional to the voltage), the refractive index 
changes in silica-on-silicon devices are caused by the thermo-optic effect induced 
by a thin film heater above the silica guide. The driving power and response time 
depend on the waveguide and the thermal conductivity of the materials. The main 
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problem is that it is almost impossible to heat one waveguide without affecting 
another nearby guide so that switching cannot be performed in a directional 
coupler geometry. One possible solution is to introduce a groove between the 
waveguides; however, this will attenuate or even eliminate the light to be 
switched. The usual method is to use another design, such as a Mach-Zehnder 
interferometer, as switching device [26,27]. 

4 Conclusion 
In this study, we have demonstrated the use of a semi analytical numerical 
solution using the method of lines for optical directional couplers with different 
refractive index and wavelength variations. The examples demonstrated that 
MoL is an excellent semi analytical numerical method that can be applied to 
simulate optical waveguide devices with accurate calculation results. 
Unfortunately, a shortcoming of MoL lies in the fact that the computing time 
depends highly on the number of lines used and the computation time increases 
dramatically for wider and more complex structures. Additionally, for complex 
structures such as S-bend waveguides based on a sinusoidal function, the guide 
edge tends to approach the boundary of the computational window at both ends. 
Another possible solution is to use coordinate transformation or cascading curve 
waveguides to model the S bend structures so that the computational window and 
hence the matrix size can be minimized to decrease the computational time.  
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